Limit shapes
ICERM, April 13-17, 2015

Limit shapes for interacting particle systems and their universal fluctuations

P.L. Ferrari in collaboration with A. Borodin

http://wt.iam.uni-bonn.de/~ferrari

An Aztec diamond of size $N=240$
Introduction Scaling theory 2d seq dynamics 2d par dynamics Random tilings Interacting particles

The border of the four regular facets, as the size $N \rightarrow \infty$:

- has a circular limit shape (aka arctic circle)

Jockush, Propp, Shor'98

- the fluctuations of border of the four facets are $\mathcal{O}\left(N^{1 / 3}\right)$ and (GUE) Tracy-Widom distributed
- As a process, it converges to the Airy ${ }_{2}$ process on the $\left(N^{2 / 3}, N^{1 / 3}\right)$ scale
- TASEP: Totally Asymmetric Simple Exclusion Process
- Configurations

$$
\eta=\left\{\eta_{j}\right\}_{j \in \mathbb{Z}}, \eta_{j}=\left\{\begin{array}{llll}
1, & \text { if } j \text { is occupied, } & 1001 \\
0, & \text { if } j \text { is empty. } &
\end{array}\right.
$$

- Dynamics

Independently, particles jump on the right site with rate 1 , provided the right is empty.

\Rightarrow Particles are ordered: position of particle n is $x^{n}(t)$

- Step initial condition is $x^{n}(0)=-n, n \geq 1$.

\Rightarrow Particles are ordered: position of particle n is $x^{n}(t)$
- Step initial condition is $x^{n}(0)=-n, n \geq 1$.

\Rightarrow Particles are ordered: position of particle n is $x^{n}(t)$
- Step initial condition is $x^{n}(0)=-n, n \geq 1$.

\Rightarrow Particles are ordered: position of particle n is $x^{n}(t)$
- Step initial condition is $x^{n}(0)=-n, n \geq 1$.

\Rightarrow Particles are ordered: position of particle n is $x^{n}(t)$
- Step initial condition is $x^{n}(0)=-n, n \geq 1$.

Some known asymptotic results:

- law of large number: $\lim _{t \rightarrow \infty} x^{\eta t}(t) / t=1-2 \sqrt{\eta}, \eta \in[-1,1]$ Rost' 81
- the fluctuations of particles are $\mathcal{O}\left(t^{1 / 3}\right)$ and (GUE) Tracy-Widom distributed
- As a process in n, it converges to the Airy 2 process on the $\left(t^{2 / 3}, t^{1 / 3}\right)$ scale

Johansson'03 (LPP) ; Borodin,Ferrari'07 (TASEP)

KPZ scaling theory

- Given a height function of a model in the Kardar-Parisi-Zhang universality class in one-dimension: $x \mapsto h(x, t)$ (example: $\left.n \mapsto x^{n}(t)\right)$
- Deterministic limit shape

$$
h_{\mathrm{ma}}(\xi)=\lim _{t \rightarrow \infty} h(\xi t, t) / t
$$

- Stationary spatial diffusivity

$$
A=\lim _{x \rightarrow \infty} \frac{\lim _{t \rightarrow \infty} \operatorname{Var}(h(\xi t, t)-h(\xi t+x, t))}{|x|}
$$

- Define further

$$
\lambda=h_{\mathrm{ma}}^{\prime \prime}(\xi) \quad \text { and } \quad \Gamma=|\lambda| A^{2}
$$

- Rescaled process

$$
h_{t}^{\mathrm{resc}}(u):=\frac{h\left(\xi t+u t^{2 / 3}, t\right)-t h_{\mathrm{ma}}\left(\xi+u t^{-1 / 3}\right)}{t^{1 / 3}}
$$

- Rescaled process

$$
h_{t}^{\mathrm{resc}}(u):=\frac{h\left(\xi t+u t^{2 / 3}, t\right)-t h_{\mathrm{ma}}\left(\xi+u t^{-1 / 3}\right)}{t^{1 / 3}}
$$

- If $h_{\text {ma }}^{\prime \prime}(\xi) \neq 0$, one expects the following:

$$
\lim _{t \rightarrow \infty} h_{t}^{\mathrm{resc}}(u)=\operatorname{sgn}(\lambda)(\Gamma / 2)^{1 / 3} \mathcal{A}_{2}\left(\frac{A u}{2 \Gamma^{2 / 3}}\right)
$$

where \mathcal{A}_{2} is the Airy $_{2}$ process
Prähofer, Spohn'02

- For flat interfaces (i.e., if $h^{\prime \prime}(\xi)=0$) one has similar formulas but with either the Airy ${ }_{1}$ process

Sasamoto'05; Borodin, Ferrari, Prähofer, Sasamoto'06 or the Airy stat depending on the initial conditions

- With Alexei Borodin, in Anisotropic growth of random surfaces in $2+1$ dimensions (arXiv:0804.3035), we introduced and studied a model of interacting particles in $2+1$-dimensions
- In discrete time, we have either parallel update or sequential update
- A discrete time parallel update includes (as different space-time projections) the Aztec diamond and the discrete time TASEP simultaneously
- The state space of our model is the Gelfand-Tsetlin pattern

$$
\operatorname{GT}_{N}=\left\{X^{N}=\left(x^{1}, \ldots, x^{N}\right) ; x^{n}=\left(x_{1}^{n}, \ldots, x_{n}^{n}\right) \mid x^{n} \prec x^{n+1}, \forall n\right\}
$$

where

$$
x^{n} \prec x^{n+1} \Leftrightarrow x_{1}^{n+1}<x_{1}^{n} \leq x_{2}^{n+1}<x_{2}^{n} \leq \ldots<x_{n}^{n} \leq x_{n+1}^{n+1}
$$

means that x^{n} and x^{n+1} interlace.

- x^{n} is the called configuration at level n

- The Markov chain at level n (discrete time) is given by $x_{1}^{n}, \ldots, x_{n}^{n}$ being one-sided random walk conditioned to stay forever in

$$
W_{n}=\left\{x^{n} \in \mathbb{Z}^{n} \mid x_{1}^{n}<x_{2}^{n}<\ldots<x_{n}^{n}\right\} .
$$

- It is the Doob h-transform of the free walk with h function the Vandermonde determinant

$$
\Delta_{n}\left(x^{n}\right)=\prod_{1 \leq i<j \leq n}\left(x_{j}^{n}-x_{i}^{n}\right)
$$

i.e., it has the one-time transition probability given by

$$
P_{n}\left(x^{n}, y^{n}\right)=\frac{\Delta_{n}\left(y^{n}\right)}{\Delta_{n}\left(x^{n}\right)} \operatorname{det}\left(P\left(x_{i}^{n}, y_{j}^{n}\right)\right)_{i, j=1}^{n}
$$

with $P(x, y)=p \delta_{y, x+1}+(1-p) \delta_{y, x}$.

- The chain at fixed time t is the one that, given x^{N}, it generates the uniform measure on the interlacing configurations:

$$
\begin{aligned}
\Lambda_{n-1}^{n}\left(x^{n}, x^{n-1}\right): & =\mathbb{P}\left(x^{n-1} \mid x^{n}\right) \\
& =\frac{\# \mathrm{GT}_{n-1} \text { with given } x^{n-1}}{\# \mathrm{GT}_{n} \text { with given } x^{n}} \mathbb{1}_{x^{n-1} \prec x^{n}} \\
& =(n-1)!\frac{\Delta_{n-1}\left(x^{n-1}\right)}{\Delta_{n}\left(x^{n}\right)} \mathbb{1}_{x^{n-1} \prec x^{n}}
\end{aligned}
$$

- The key property used below is the intertwining property of the chains:

$$
\Delta_{n-1}^{n}:=P_{n} \Lambda_{n-1}^{n}=\Lambda_{n-1}^{n} P_{n-1}
$$

- The sequential update is the following:
(1) $x^{1}(t) \rightarrow x^{1}(t+1)$ according to $P_{1}\left(x^{1}(t), x^{1}(t+1)\right)$,
(2) $x^{2}(t) \rightarrow x^{2}(t+1)$ to be the middle point of the chain

$$
\left(P_{2} \circ \Lambda_{1}^{2}\right)\left(x^{2}(t), x^{1}(t+1)\right)
$$

(3) and so on

$$
\begin{array}{rrr}
x^{3}(t) & \xrightarrow{P_{3}} & x^{3}(t+1) \\
\downarrow & & \\
\Lambda_{2}^{3} & & \\
x^{2}(t) & \xrightarrow{P_{2}} & \Lambda_{2}^{3} \\
& & x^{2}(t+1) \\
& & \\
\Lambda_{1}^{2} & & \\
x^{1}(t) & \xrightarrow{P_{1}} & \\
& & \Lambda_{1}^{1}(t+1)
\end{array}
$$

- Projection on $\left\{x_{1}^{1}, x_{1}^{2}, \ldots, x_{1}^{N}\right\}$ is TASEP in discrete time with sequential update
- There is a class of measure which form is invariant under P_{Λ}^{N}. Let $\mu_{N}\left(x^{N}\right)$ be a probability measure on W_{N} and define

$$
M_{N}\left(X^{N}\right):=\mu_{N}\left(x^{N}\right) \Lambda_{N-1}^{N}\left(x^{N}, x^{N-1}\right) \cdots \Lambda_{1}^{2}\left(x^{2}, x^{1}\right)
$$

Then, applying t times P_{Λ}^{N} we have
$\left(M_{N}\left(P_{\Lambda}^{N}\right)^{t}\right)\left(Y^{N}\right)=\left(\mu_{N}\left(P_{N}\right)^{t}\right)\left(y^{N}\right) \Lambda_{N-1}^{N}\left(y^{N}, y^{N-1}\right) \cdots \Lambda_{1}^{2}\left(y^{2}, y^{1}\right)$

- This is a consequence of the intertwining properties of the Markov chains!
- Consider further the "packed" initial condition: $x_{k}^{n}(0)=-n+k, 1 \leq k \leq n \leq N$. One can see that it can be written as above with μ_{N} of the form

$$
\mu_{N}\left(x^{N}\right)=\Delta_{N}\left(x^{N}\right) \operatorname{det}\left(\Psi_{j}\left(x_{i}^{N}, 0\right)\right)_{i, j=1}^{N} .
$$

- Consider further the "packed" initial condition:
$x_{k}^{n}(0)=-n+k, 1 \leq k \leq n \leq N$. One can see that it can be written as above with μ_{N} of the form

$$
\mu_{N}\left(x^{N}\right)=\Delta_{N}\left(x^{N}\right) \operatorname{det}\left(\Psi_{j}\left(x_{i}^{N}, 0\right)\right)_{i, j=1}^{N} .
$$

\Rightarrow The measure at time t has the form

$$
\prod_{n=1}^{N-1} \mathbb{1}_{\left[x^{n} \prec x^{n+1}\right]} \operatorname{det}\left(\Psi_{j}\left(x_{i}^{N}, t\right)\right)_{i, j=1}^{N}
$$

\Rightarrow The measure at fixed level N and times $t_{1}<\ldots<t_{m}$ has the form

$$
\operatorname{det}\left(\Psi_{j}\left(x_{i}^{N}\left(t_{1}\right), t_{1}\right)\right)_{i, j=1}^{N} \prod_{k=1}^{m-1} \operatorname{det}\left(P_{t_{k}, t_{k+1}}\left(x^{N}\left(t_{k}\right), x^{N}\left(t_{k+1}\right)\right) \Delta_{N}\left(x^{N}\left(t_{m}\right)\right)\right.
$$

- Measure of this form have determinantal correlations as they are conditional L-ensembles

Correlation structure of the blue lozenges / particles
Theorem (arXiv:0804.3035)
Consider any N triples $\left(x_{j}, n_{j}, t_{j}\right)$ such that

$$
t_{1} \leq t_{2} \leq \ldots \leq t_{N}, \quad n_{1} \geq n_{2} \geq \ldots \geq n_{N}
$$

Then,

$$
\begin{aligned}
& \mathbb{P}\left(\text { at each }\left(x_{j}, n_{j}, t_{j}\right), j=1, \ldots, N,\right. \\
& \text { there exists a blue lozenge } / \text { particle }) \\
& \\
& =\operatorname{det}\left[K\left(x_{i}, n_{i}, t_{i} ; x_{j}, n_{j}, t_{j}\right)\right]_{1 \leq i, j \leq N}
\end{aligned}
$$

for an explicit kernel K.

Correlation structure of the three types of lozenges
Theorem (arXiv:0804.3035)
Consider any N triples $\left(x_{j}, n_{j}, t_{j}\right)$ such that

$$
t_{1} \leq t_{2} \leq \ldots \leq t_{N}, \quad n_{1} \geq n_{2} \geq \ldots \geq n_{N}
$$

Then,

$$
\begin{aligned}
& \mathbb{P}\left(\text { at each }\left(x_{j}, n_{j}, t_{j}\right), j=1, \ldots, N,\right. \\
& \text { there exists a lozenge of color } \left.c_{j}\right) \\
& \quad=\operatorname{det}\left[\tilde{K}\left(x_{i}, n_{i}, t_{i}, c_{i} ; x_{j}, n_{j}, t_{j}, c_{j}\right)\right]_{1 \leq i, j \leq N}
\end{aligned}
$$

for an explicit kernel \tilde{K}.

- The parallel update is the following $x^{n}(t) \rightarrow x^{n}(t+1)$ to be the middle point of the chain $\left(P_{n} \circ \Lambda_{n-1}^{n}\right)\left(x^{n}(t), x^{n-1}(t)\right)$
$x^{3}(t) \xrightarrow{P_{3}} x^{3}(t+1)$
, Λ_{2}^{3}
$x^{2}(t) \xrightarrow{P_{2}} x^{2}(t+1)$
, Λ_{1}^{2}
$x^{1}(t) \xrightarrow{P_{1}} x^{1}(t+1)$
- Projection on $\left\{x_{1}^{1}, x_{1}^{2}, \ldots, x_{1}^{N}\right\}$ is TASEP in discrete time with parallel update
- This particle system is tightly related with the Aztec diamond:
(1) Start with packed initial condition:

$$
x^{1}=(-1), \quad x^{2}=(-2,-1), \quad x^{3}=(-3,-2,-1)
$$

(2) Extend our configuration space to:

- Aztec diamond and line ensembles:

- A simple transformation of the Aztec line ensembles give a set of non-intersecting line ensembles on the following LGV graph with uniform weights

- Below we consider line ensembles with weight α on vertical segments
- Possible configurations with their weights.

- The red points are the only that are not fixed by the boundary conditions: they form the particle process described above.
- Possible configurations with their weights.

Time $t=1$
Weight α
Probability p

- The red points are the only that are not fixed by the boundary conditions: they form the particle process described above.
- Possible configurations with their weights.

- The red points are the only that are not fixed by the boundary conditions: they form the particle process described above.
- Possible configurations with their weights.

Time $t=2$
Weight α
Probability $p \cdot(1-p)^{2}$

- The red points are the only that are not fixed by the boundary conditions: they form the particle process described above.
- Possible configurations with their weights.

Time $t=2$
Weight α^{2}
Probability $p \cdot(1-p) p$

- The red points are the only that are not fixed by the boundary conditions: they form the particle process described above.
- Possible configurations with their weights.

Time $t=2$
Weight α^{3}
Probability $p \cdot p^{2}$

- The red points are the only that are not fixed by the boundary conditions: they form the particle process described above.
- Possible configurations with their weights.

Time $t=1$
Weight α
Probability p

Time $t=2$
Weight α^{2}
Probability $p \cdot p(1-p)$

- The red points are the only that are not fixed by the boundary conditions: they form the particle process described above.
- Possible configurations with their weights.

- The red points are the only that are not fixed by the boundary conditions: they form the particle process described above.
- Possible configurations with their weights.

- The red points are the only that are not fixed by the boundary conditions: they form the particle process described above.
- Possible configurations with their weights.

Time $t=2$
Weight α^{2}
Probability $(1-p) \cdot p^{2}$

- The red points are the only that are not fixed by the boundary conditions: they form the particle process described above.
- Possible configurations with their weights.

- The red points are the only that are not fixed by the boundary conditions: they form the particle process described above.
- Consider a simple generalization of the line ensembles by staying this time to this LGV graph

- The previous example fits in a dynamics with the following scheme

Macroscopic parametrization:

- $x=[-\eta L+\nu L]$
- $n=[\eta L]$
- $t=\tau L$
for a $L \gg 1$.

Asymptotic domain with "irregular" tiling (bordered by facets)
$\mathcal{D}=\{(\nu, \eta, \tau),|\sqrt{\tau}-\sqrt{\eta}|<\sqrt{\nu}<\sqrt{\tau}+\sqrt{\eta}\}$

Bulk: $\mathcal{D}=\left\{(\nu, \eta, \tau) \in \mathbb{R}_{+}^{3},|\sqrt{\tau}-\sqrt{\eta}|<\sqrt{\nu}<\sqrt{\tau}+\sqrt{\eta}\right\}$

$$
\text { Map } \Omega: \mathcal{D} \rightarrow \mathbb{H}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}
$$

Kenyon'04

- Ω is the critical point in the steep descent analysis of the correlation kernel!
- $\left(\pi_{\nu} / \pi, \pi_{\eta} / \pi, \pi_{\tau} / \pi\right)$ are the frequencies of the three types of lozenge tilings: Blue for π_{η}, Red for π_{τ}, Green for π_{ν}
- Limit shape:

$$
\bar{h}(\nu, \eta, \tau):=\lim _{L \rightarrow \infty} \frac{\mathbb{E}(h((\nu-\eta) L, \eta L, \tau L))}{L}=\int_{\nu}^{(\sqrt{\tau}+\sqrt{\nu})^{2}} \frac{\pi_{\eta}\left(\nu^{\prime}, \eta, \tau\right)}{\pi} \mathrm{d} \nu^{\prime}
$$

- The slopes are

$$
\frac{\partial \bar{h}}{\partial \nu}=-\frac{\pi_{\eta}}{\pi}, \quad \frac{\partial \bar{h}}{\partial \eta}=1-\frac{\pi_{\nu}}{\pi}
$$

- Growth velocity:

$$
\frac{\partial \bar{h}}{\partial \tau}=\frac{\sin \left(\pi_{\nu}\right) \sin \left(\pi_{\eta}\right)}{\pi \sin \left(\pi_{\tau}\right)}=\frac{\operatorname{Im}(\Omega)}{\pi}
$$

Theorem (arXiv:0804.3035)
For all $(\nu, \eta, \tau) \in \mathcal{D}$, denote $\kappa=(\nu-\eta, \eta, \tau)$. We have moment convergence of

$$
\lim _{L \rightarrow \infty} \frac{h(\kappa L)-\mathbb{E}(h(\kappa L))}{\sqrt{c \ln L}}=\xi \sim \mathcal{N}(0,1)
$$

with $c=1 /\left(2 \pi^{2}\right)$ is independent of the macroscopic position in \mathcal{D}.

Theorem (arXiv:0804.3035)
Consider any (disjoints) N triples $\kappa_{j}=\left(\nu_{j}-\eta_{j}, \eta_{j}, \tau_{j}\right)$, with $\left(\nu_{j}, \eta_{j}, \tau_{j}\right) \in \mathcal{D}$,

$$
\tau_{1} \leq \tau_{2} \leq \ldots \leq \tau_{N} \quad \eta_{1} \geq \eta_{2} \geq \ldots \geq \eta_{N}
$$

Set $H_{L}(\kappa):=\sqrt{\pi}(h(\kappa L)-\mathbb{E}(h(\kappa L)))$. Then,

$$
\begin{aligned}
\lim _{L \rightarrow \infty} \mathbb{E}\left(H_{L}\left(\kappa_{1}\right) \cdots H_{L}\left(\kappa_{N}\right)\right) \\
= \begin{cases}0, & \text { odd } N, \\
\sum_{\text {pairings } \sigma} \prod_{j=1}^{N / 2} G\left(\Omega_{\sigma(2 j-1)}, \Omega_{\sigma(2 j)}\right), & \text { even } N,\end{cases}
\end{aligned}
$$

with $G(z, w)=-(2 \pi)^{-1} \ln |(z-w) /(z-\bar{w})|$ is the Green function of the Laplacian on \mathbb{H} with Dirichlet boundary conditions.

