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An example of random tilings 1

An Aztec diamond of size N = 240
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An example of random tilings 2

The border of the four regular facets, as the size N →∞:

has a circular limit shape (aka arctic circle)
Jockush, Propp, Shor’98

the fluctuations of border of the four facets are O(N1/3) and
(GUE) Tracy-Widom distributed

As a process, it converges to the Airy2 process on the
(N2/3, N1/3) scale Johansson’03
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An example of interacting particle system 3

TASEP: Totally Asymmetric Simple Exclusion Process

Configurations

η = {ηj}j∈Z, ηj =

{
1, if j is occupied,
0, if j is empty.

Dynamics
Independently, particles jump on the right
site with rate 1, provided the right is empty.
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An example of interacting particle system 4

⇒ Particles are ordered: position of particle n is xn(t)

Step initial condition is xn(0) = −n, n ≥ 1.
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An example of interacting particle system 5

⇒ Particles are ordered: position of particle n is xn(t)

Step initial condition is xn(0) = −n, n ≥ 1.

Some known asymptotic results:

law of large number: limt→∞ x
ηt(t)/t = 1− 2

√
η, η ∈ [−1, 1]

Rost’81

the fluctuations of particles are O(t1/3) and (GUE)
Tracy-Widom distributed

As a process in n, it converges to the Airy2 process on the
(t2/3, t1/3) scale

Johansson’03 (LPP); Borodin,Ferrari’07 (TASEP)
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KPZ scaling theory 6

Given a height function of a model in the Kardar-Parisi-Zhang
universality class in one-dimension: x 7→ h(x, t) (example:
n 7→ xn(t))

Deterministic limit shape

hma(ξ) = lim
t→∞

h(ξt, t)/t

Stationary spatial diffusivity

A = lim
x→∞

limt→∞Var(h(ξt, t)− h(ξt+ x, t))

|x|
Define further

λ = h′′ma(ξ) and Γ = |λ|A2

Rescaled process

hresc
t (u) :=

h(ξt+ ut2/3, t)− thma(ξ + ut−1/3)

t1/3
.
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KPZ scaling theory 7

Rescaled process

hresc
t (u) :=

h(ξt+ ut2/3, t)− thma(ξ + ut−1/3)

t1/3
.

If h′′ma(ξ) 6= 0, one expects the following:

lim
t→∞

hresc
t (u) = sgn(λ)(Γ/2)1/3A2

(
Au

2Γ2/3

)
where A2 is the Airy2 process Prähofer,Spohn’02

For flat interfaces (i.e., if h′′(ξ) = 0) one has similar formulas
but with either the Airy1 process

Sasamoto’05; Borodin,Ferrari,Prähofer,Sasamoto’06

or the Airystat depending on the initial conditions
Baik,Ferrari,Péché’09
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Interacting particles and random tilings 8

With Alexei Borodin, in Anisotropic growth of random
surfaces in 2+1 dimensions (arXiv:0804.3035), we introduced
and studied a model of interacting particles in
2 + 1-dimensions

In discrete time, we have either parallel update or sequential
update

A discrete time parallel update includes (as different
space-time projections) the Aztec diamond and the discrete
time TASEP simultaneously
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A 2 + 1-dimensional model - building bricks 9

The state space of our model is the Gelfand-Tsetlin pattern

GTN = {XN = (x1, . . . , xN );xn = (xn1 , . . . , x
n
n) |xn ≺ xn+1, ∀n}

where

xn ≺ xn+1 ⇔ xn+1
1 < xn1 ≤ xn+1

2 < xn2 ≤ . . . < xnn ≤ xn+1
n+1

means that xn and xn+1 interlace.

xn is the called configuration at level n
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A 2 + 1-dimensional model - building bricks 10

The Markov chain at level n (discrete time) is given by
xn1 , . . . , x

n
n being one-sided random walk conditioned to stay

forever in

Wn = {xn ∈ Zn |xn1 < xn2 < . . . < xnn}.

It is the Doob h-transform of the free walk with h function
the Vandermonde determinant

∆n(xn) =
∏

1≤i<j≤n
(xnj − xni ),

i.e., it has the one-time transition probability given by

Pn(xn, yn) =
∆n(yn)

∆n(xn)
det(P (xni , y

n
j ))ni,j=1

with P (x, y) = pδy,x+1 + (1− p)δy,x.
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A 2 + 1-dimensional model - building bricks 11

The chain at fixed time t is the one that, given xN , it
generates the uniform measure on the interlacing
configurations:

Λnn−1(xn, xn−1) : = P(xn−1|xn)

=
#GTn−1 with given xn−1

#GTn with given xn
1xn−1≺xn

= (n− 1)!
∆n−1(xn−1)

∆n(xn)
1xn−1≺xn
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A 2 + 1-dimensional model - building bricks 12

The key property used below is the intertwining property of
the chains: Diaconis, Fill ’90

∆n
n−1 := PnΛnn−1 = Λnn−1Pn−1
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A 2 + 1-dimensional model - sequential update 13

The sequential update is the following:
1 x1(t)→ x1(t+ 1) according to P1(x1(t), x1(t+ 1)),
2 x2(t)→ x2(t+ 1) to be the middle point of the chain

(P2 ◦ Λ2
1)(x2(t), x1(t+ 1))

3 and so on

Projection on {x1
1, x

2
1, . . . , x

N
1 } is TASEP in discrete time with

sequential update
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A 2 + 1-dimensional model - conserved measures 14

There is a class of measure which form is invariant under PNΛ .
Let µN (xN ) be a probability measure on WN and define

MN (XN ) := µN (xN )ΛNN−1(xN , xN−1) · · ·Λ2
1(x2, x1).

Then, applying t times PNΛ we have

(MN (PNΛ )t)(Y N ) = (µN (PN )t)(yN )ΛNN−1(yN , yN−1) · · ·Λ2
1(y2, y1)

This is a consequence of the intertwining properties of the
Markov chains!
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A 2 + 1-dimensional model - conserved measures 15

Consider further the ”packed” initial condition:
xnk(0) = −n+ k, 1 ≤ k ≤ n ≤ N . One can see that it can be
written as above with µN of the form

µN (xN ) = ∆N (xN ) det(Ψj(x
N
i , 0))Ni,j=1.

⇒ The measure at time t has the form
N−1∏
n=1

1[xn≺xn+1] det(Ψj(x
N
i , t))

N
i,j=1

⇒ The measure at fixed level N and times t1 < . . . < tm has the
form

det(Ψj(x
N
i (t1), t1))Ni,j=1

m−1∏
k=1

det(Ptk,tk+1
(xN (tk), x

N (tk+1))∆N (xN (tm))

Measure of this form have determinantal correlations as they
are conditional L-ensembles Borodin, Rains’06
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A 2 + 1-dimensional model - correlations 16

Correlation structure of the blue lozenges / particles

Theorem (arXiv:0804.3035)

Consider any N triples (xj , nj , tj) such that

t1 ≤ t2 ≤ . . . ≤ tN , n1 ≥ n2 ≥ . . . ≥ nN .

Then,

P
(
at each (xj , nj , tj), j = 1, . . . , N,

there exists a blue lozenge / particle
)

= det[K(xi, ni, ti;xj , nj , tj)]1≤i,j≤N

for an explicit kernel K.
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A 2 + 1-dimensional model - correlations 17

Correlation structure of the three types of lozenges

Theorem (arXiv:0804.3035)

Consider any N triples (xj , nj , tj) such that

t1 ≤ t2 ≤ . . . ≤ tN , n1 ≥ n2 ≥ . . . ≥ nN .

Then,

P
(
at each (xj , nj , tj), j = 1, . . . , N,

there exists a lozenge of color cj
)

= det[K̃(xi, ni, ti, ci;xj , nj , tj , cj)]1≤i,j≤N

for an explicit kernel K̃.
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A 2 + 1-dimensional model - parallel update 18

The parallel update is the following
xn(t)→ xn(t+ 1) to be the middle point of the chain
(Pn ◦ Λnn−1)(xn(t), xn−1(t))

Projection on {x1
1, x

2
1, . . . , x

N
1 } is TASEP in discrete time with

parallel update
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A 2 + 1-dimensional model - parallel update 19

This particle system is tightly related with the Aztec diamond:
1 Start with packed initial condition:

x1 = (−1), x2 = (−2,−1), x3 = (−3,−2,−1).

2 Extend our configuration space to:
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A 2 + 1-dimensional model - the Aztec diamond case 20

Aztec diamond and line ensembles:
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A 2 + 1-dimensional model - the Aztec diamond case 21

A simple transformation of the Aztec line ensembles give a set
of non-intersecting line ensembles on the following LGV graph
with uniform weights

Below we consider line ensembles with weight α on vertical
segments
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A 2 + 1-dimensional model - the Aztec diamond case 22

Possible configurations with their weights.

Time t = 0
Weight 1

Probability 1

The red points are the only that are not fixed by the boundary
conditions: they form the particle process described above.
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A 2 + 1-dimensional model - the Aztec diamond case 22

Possible configurations with their weights.

Time t = 0
Weight 1

Probability 1

Time t = 1
Weight α

Probability p

The red points are the only that are not fixed by the boundary
conditions: they form the particle process described above.
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A 2 + 1-dimensional model - the Aztec diamond case 22

Possible configurations with their weights.

Time t = 0
Weight 1

Probability 1

Time t = 1
Weight 1

Probability 1− p

The red points are the only that are not fixed by the boundary
conditions: they form the particle process described above.
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A 2 + 1-dimensional model - the Aztec diamond case 22

Possible configurations with their weights.

Time t = 1
Weight α

Probability p

Time t = 2
Weight α

Probability p · (1− p)2

The red points are the only that are not fixed by the boundary
conditions: they form the particle process described above.
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A 2 + 1-dimensional model - the Aztec diamond case 22

Possible configurations with their weights.

Time t = 1
Weight α

Probability p

Time t = 2
Weight α2

Probability p · (1− p)p

The red points are the only that are not fixed by the boundary
conditions: they form the particle process described above.
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A 2 + 1-dimensional model - the Aztec diamond case 22

Possible configurations with their weights.

Time t = 1
Weight α

Probability p

Time t = 2
Weight α3

Probability p · p2

The red points are the only that are not fixed by the boundary
conditions: they form the particle process described above.
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A 2 + 1-dimensional model - the Aztec diamond case 22

Possible configurations with their weights.

Time t = 1
Weight α

Probability p

Time t = 2
Weight α2

Probability p · p(1− p)

The red points are the only that are not fixed by the boundary
conditions: they form the particle process described above.
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A 2 + 1-dimensional model - generalizations 23

Consider a simple generalization of the line ensembles by
staying this time to this LGV graph
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A 2 + 1-dimensional model - generalizations 24

The previous example fits in a dynamics with the following
scheme
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A 2 + 1-dimensional model - results in the bulk 25

Macroscopic parametrization:

x = [−ηL+ νL]

n = [ηL]

t = τL

for a L� 1.

Asymptotic domain with “irregular”
tiling (bordered by facets)

D = {(ν, η, τ), |
√
τ−√η|<

√
ν<
√
τ+
√
η}
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A 2 + 1-dimensional model - results in the bulk 26

Bulk: D = {(ν, η, τ) ∈ R3
+, |
√
τ −√η| <

√
ν <
√
τ +
√
η}

Map Ω : D → H = {z ∈ C|Im(z) > 0}

Kenyon’04

Ω is the critical point in the steep descent analysis of the
correlation kernel!

(πν/π, πη/π, πτ/π) are the frequencies of the three types of
lozenge tilings: Blue for πη, Red for πτ , Green for πν
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A 2 + 1-dimensional model - results in the bulk 27

Limit shape:

h̄(ν, η, τ) := lim
L→∞

E(h((ν − η)L, ηL, τL))

L
=

∫ (
√
τ+
√
ν)2

ν

πη(ν
′, η, τ)

π
dν ′

The slopes are

∂h̄

∂ν
= −πη

π
,

∂h̄

∂η
= 1− πν

π

Growth velocity:

∂h̄

∂τ
=

sin(πν) sin(πη)

π sin(πτ )
=

Im(Ω)

π
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A 2 + 1-dimensional model - results in the bulk 28

Theorem (arXiv:0804.3035)

For all (ν, η, τ) ∈ D, denote κ = (ν − η, η, τ). We have moment
convergence of

lim
L→∞

h(κL)− E(h(κL))√
c lnL

= ξ ∼ N (0, 1)

with c = 1/(2π2) is independent of the macroscopic position in D.
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A 2 + 1-dimensional model - results in the bulk 29

Theorem (arXiv:0804.3035)

Consider any (disjoints) N triples κj = (νj − ηj , ηj , τj), with
(νj , ηj , τj) ∈ D,

τ1 ≤ τ2 ≤ . . . ≤ τN η1 ≥ η2 ≥ . . . ≥ ηN .

Set HL(κ) :=
√
π (h(κL)− E(h(κL))). Then,

lim
L→∞

E(HL(κ1) · · ·HL(κN ))

=


0, odd N,∑
pairings σ

N/2∏
j=1

G(Ωσ(2j−1),Ωσ(2j)), even N,

with G(z, w) = −(2π)−1 ln |(z −w)/(z − w̄)| is the Green function
of the Laplacian on H with Dirichlet boundary conditions.
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